Ongoing Research Projects for the session 2023-2024

S.No.	Project Title	Session	Department	Objective	Duration
1	Green Synthesis & Anticancer Activity of Oxazines Compounds Prepared by Using Orange Juice	2023-24	Department of Chemistry (PG)	To preparenovelandpotentanticanceragentsthroughgreensynthesiswithminimalsideeffects.	3 years
2	Synthesis And Characterization of Some New Oxazines as Novel Anticancer Agents by Green Synthesis	2023-24	Department of Chemistry (PG)	To investigate the underlying mechanism of action of the promising oxazine compounds to elucidate their mode of anticancer activity.	3 Years
3	Isolation of Copper Resistant Spore-Forming Aerobic Bacteria from Industrial Copper Waste	2023-24	Department of Biotechnology	This study aims to isolate spore- forming aerobic SRB from industrial copper waste which will be further analyzed to observe the Neem Extract tolerance.	4-6 Months
4	Sustainable Valorization of Industrial Waste for the Yield of Bioethanol & Value-Add Products	2023-24	Department of Biotechnology	The aim of the study is to explore the feasibility and production potential of additional value- added products from the fermentable waste.	4-6 Months