Ongoing Research Projects for the session 2023-2024

S.No.	Project Title	Session	Department	Objective	Duration
1	Green Synthesis & Anticancer Activity of Oxazines Compounds Prepared by Using Orange Juice	2023-24	Department of Chemistry (PG)	Green Synthesis & Anticancer Activity of Oxazines Compounds Prepared By Using Orange Juice	3 years
2	Synthesis And Characterization of Some New Oxazines as Novel Anticancer Agents by Green Synthesis	2023-24	Department of Chemistry (PG)	Investigating the underlying mechanisms of action of the promising oxazine compounds to elucidate their mode of anticancer activity.	3 Years
3	Isolation Of Copper Resistant Spore- Forming Aerobic Bacteria from Industrial Copper Turnings Waste	2023-24	Department of Biotechnology	This study was initiated assuming that spore-forming aerobic SRB may be isolated from industrial copper waste.	4-6 Months
4	SustainableValorizati on Of Industrial Waste For The Yield Of Bioethanol & Value-Add Products	2023-24	Department of Biotechnology	The aim of the study is to explore the feasibility and production potential of additional value-added products from fermentable waste.	4-6 Months